

Taoglas Reach Series

Part No: PCS.68.A

Description

Reach Low Profile Wideband 5G/4G PCB SMD Antenna

Features:

Patent Pending Innovative Low Profile Design

High Efficiency Wideband Antenna, Covering 600 to 6000 MHz

Supporting 5G FR1 Bands

600 MHz 5G/4G Band 71 Support

Surface Mount Distribution (SMD) - Supplied on Tape & Reel

Manufactured in an IATF16949 Certified Facility

Dimensions: 42 x 10 x 1.5 mm

RoHS & REACH Compliant

1.	Introduction	2
2.	Specification	4
3.	Antenna Characteristics	6
4.	Radiation Patterns	9
5.	Mechanical Drawing	18
6.	Packaging	19
7.	Antenna Integration Guide	20
8.	Solder Reflow Profile	27
9.	Application Note	28
	Changelog	30

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

1. Introduction

The Taoglas Reach Series PCS.68.A is a revolutionary 5G/4G, low profile, small footprint, patent pending, SMD mount PCB wide-band antenna. The PCS.68.A has been designed to cover all 5G and 4G bands, including all sub-6GHz deployments across the 600MHz to 6000MHz spectrum in a very small footprint of just 42 x 10mm. It also covers 3G/2G bands to allow for fall-back when 5G/4G is not available. The low profile size of just 1.5mm in height allows for installation where height is at a premium.

Typical applications include

- Autonomous/UAVs
- Smart Metering
- Connected Health
- Wearable Technologies
- Payment Terminals

The patent pending design uses printed circuit board material and innovative design techniques to deliver the highest efficiencies at all bands when mounted on the device's main PCB. The PCS.68.A is suitable for lower cost 5G/4G applications, especially IoT projects requiring wide bandwidth and comes supplied on tape and reel to allow it to be mounted via 'pick & place' onto the PCB.

If tuning is required, it can also be tuned specifically depending on device environment. Contact your local Taoglas customer support team for advice on integrating the PCS.68.A into your device.

1.1 Key Advantages

1. Highest efficiency in small footprint

A comparative antenna to the Reach, for example, metal/ceramic/FPC, would have much-reduced efficiency in this configuration due to their high substrate loss at high frequencies. Very high efficiency antennas are critical to 5G/4G devices ability to deliver the stated data-speed rates of systems such as 5G /4G.

2. Low profile

Many applications require a large mechanical size to work efficiently, which occupys the usable PCB space. The size of PCS.68 is only 42mm X 10mm (420mm²), and if accounting for the 4mm keep out area, the total area consumed on the PCB is only 42mmX14mm = 588mm². The solution allows board designers to maximize their PCB space.

3. Adaptable

The high radiation efficiency of the Reach over its entire operating bandwidth means that the total efficiency is only limited by the impedance mismatch loss. As a result, this antenna has been optimized via a matching network to 600 MHz - 960 MHz and 1710 MHz - 6000 MHz with the minimum efficiencies of 30% and 50% respectively. The performance of direct feeding the antenna without a matching circuit is good from 730 MHz - 960 MHz and 1710 MHz - 6000 MHz.

4. More resistant to detuning compared to other antenna integrations

If tuning is required it can be tuned for the device environment using a matching circuit, or other techniques on the main PCB itself. There is no need for new tooling, thereby saving money if customization is required.

5. Surface Mount Device (SMD)

Direct mount, 'on-board' antennas save on labour, cable and connector costs, lead to higher integration yield rates and reduce losses in transmission.

6. Minimum Transmission and Reception Losses

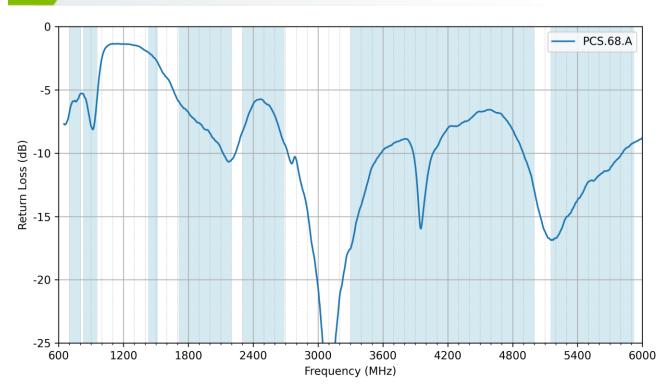
These are kept to an absolute minimum resulting in much improved OTA (over the air), i.e. TRP (Total Radiated Power) / TIS (Total Isotropic Radiation), device performance compared to similar efficiency cable and connector antenna solutions. This means it is an ideal antenna to be used for devices that This means it is an ideal antenna to be used for devices that need to pass for example USA carrier network approvals.

2. Specification

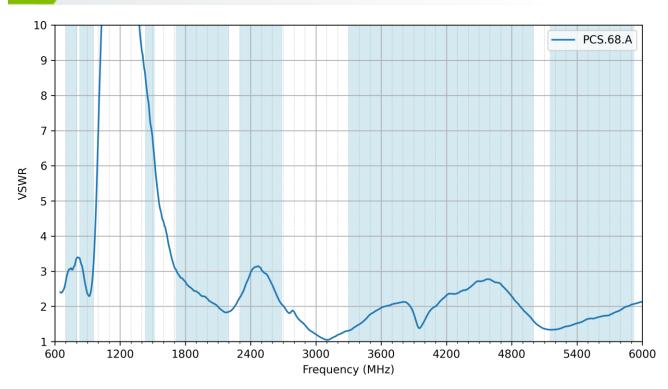
Electrical								
Band	Frequency (MHz)	Efficiency (%)	Average Gain (dB)	Peak Gain (dBi)	Impedance	Polarization	Radiation Pattern	Max. input power
4G/3G Band 12,13,14,17,28,29	698-806	52.2	-2.82	1.33				
4G/3G/NB-IoT/Cat M Band 5,8,18,19,20,26,27	824-960	48.8	-3.11	2.28				
5GNR/4G Band 21,32,74,75,76	1427-1518	27.5	-5.60	1.23				
4G/3G Band 1,2,3,4,9,23,25,35,39 ,66	1710-2200	73.8	-1.32	6.22	50 Ω	Linear	Omni - Directional	2W
4G/3G Band 7,30,38,40,41	2300-2690	70.5	-1.52	5.58				
5GNR/4G Band 22,42,48,77,78,79	3300-5000	71.5	-1.46	6.48				
LTE5200/Wi-Fi5800	5150-5925	76.8	-1.14	5.34				

Mechanical				
Dimensions	42mm x 10mm x 1.5mm			
Weight	2g			
Material	PCB			
Termination	Solder Pad			
EVB Connector	SMA-Female			

Environmental				
Operation Temperature	-40°C to 85°C			
Storage Temperature	-40°C to 105°C			
Moisture Sensitivity Level (MSL)	3 (168 Hours)			
Relative Humidity	Non-condensing 65°C 95% RH			
RoHS & REACH Compliant	Yes			

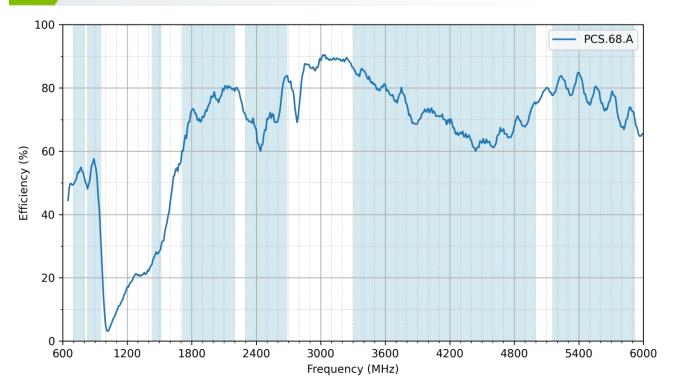


	FG/46	Pands				
5G/4G Bands						
Band Number	5GNR / FR1 / LTE / LTE-Advanced / WCDMA / HSPA / HSPA+ / TD-SCDMA					
P4	Uplink	Downlink	Covered			
B1	1920 to 1980	2110 to 2170	√			
B2	1850 to 1910	1930 to 1990	*			
B3	1710 to 1785	1805 to 1880	*			
B4	1710 to 1755	2110 to 2155	*			
B5	824 to 849	869 to 894	*			
B7	2500 to 2570	2620 to 2690	*			
B8 B9*	880 to 915 1749.9 to 1784.9	925 to 960 1844.9 to 1879.9	*			
B11	1427.9 to 1447.9	1475.9 to 1495.9	· ·			
B12	699 to 716	729 to 746	·			
B13	777 to 787	746 to 756	·			
B14	777 to 787 788 to 798	758 to 768	· /			
B17	704 to 716	734 to 746	· /			
B18	815 to 830	860 to 875	·			
			· /			
B19	830 to 845	875 to 890	*			
B20	832 to 862	791 to 821	·			
B21 B22*	1447.9 to 1462.9	1495.9 to 1510.9	*			
	3410 to 3490	3510 to 3590	*			
B23*	2000 to 2020	2180 to 2200	*			
B24	1626.5 to 1660.5	1525 to 1559	*			
B25	1850 to 1915	1930 to 1995				
B26	814 to 849	859 to 894	√			
B27*	807 to 824	852 to 869	√			
B28	703 to 748	758 to 803	√			
B29		0 728	√			
B30	2305 to 2315	2350 to 2360	√			
B31	452.5 to 457.5	462.5 to 467.5	*			
B32		to 1496	*			
B34		to 2025	*			
B35		o 1910	*			
B36	1930 t	*				
B37	1910 t	*				
B38	2570 t	√				
B39		1880 to 1920				
B40		to 2400	*			
B41		to 2690	*			
B42		0 3600	*			
B43		0 3800	√			
B45		10 1467	*			
B46		to 5925	*			
B47		to 5925	√			
B48		o 3700	*			
B49		0 3700	√			
B50		0 1517	√			
B51		0 1432	√			
B52	3300 t	∀ ✓				
B53 B65	1920 to 2010	to 2495 2110 to 2200	*			
		2110 to 2200 2110 to 2200	∀ ✓			
B66	1710 to 1780		*			
B68 B69	698 to 728	753 to 783 to 2620	*			
B70	1695 to 1710	1995 to 2020	*			
B71	663 to 698	617 to 652	*			
B72	451 to 456	461 to 466	*			
B73	451 to 456 450 to 455	460 to 465	*			
B74	1427 to 1470	1475 to 1518	Ž			
B75						
B76	1432 to 1517 ✓					
B77	1427 to 1432					
B78	3300 to 3800 ✓					
B79 B85	4400 to 5000 4400 to 5000 698 to 716 728 to 746 ✓					
B87	698 to 716 410 to 415	728 to 746 420 to 425	x x			
B88	410 to 415 412 to 417	420 to 427	*			
000	412 (0 417	422 (0 427	*			

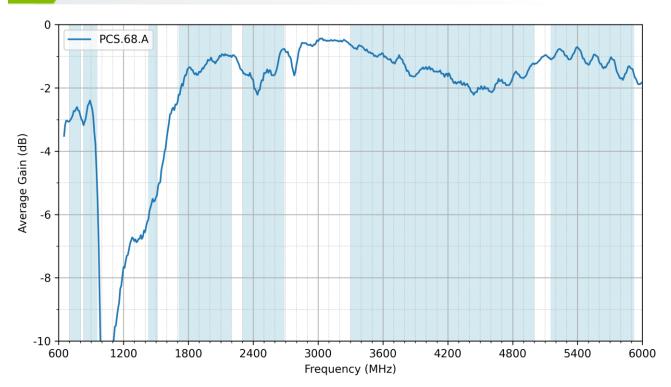


3. Antenna Characteristics

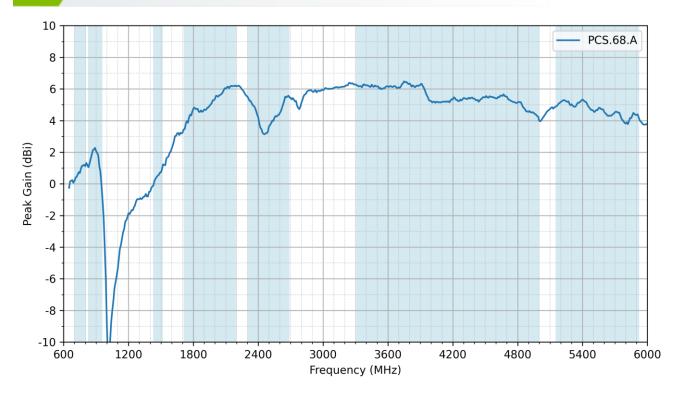
3.1 Return Loss



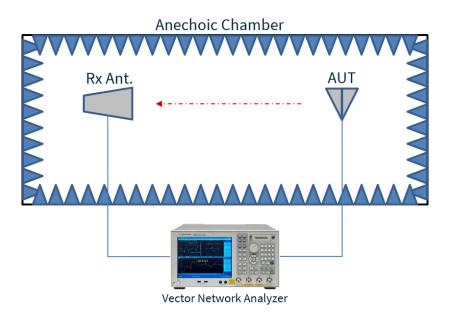
3.2 VSWR

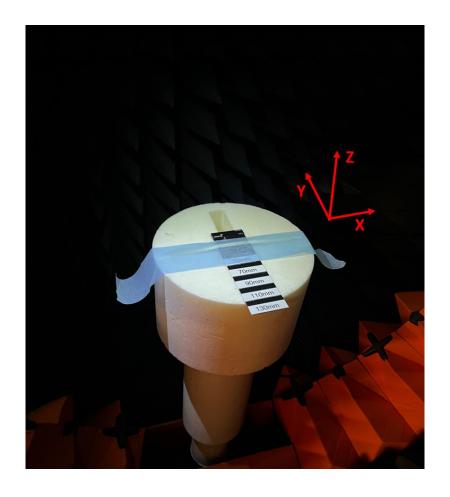


3.3 Efficiency

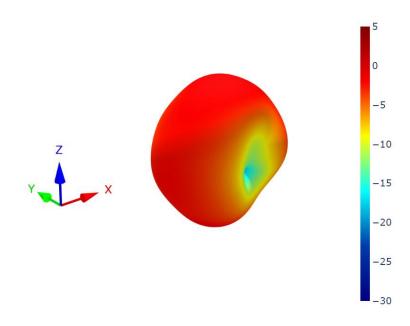


3.4 Average Gain

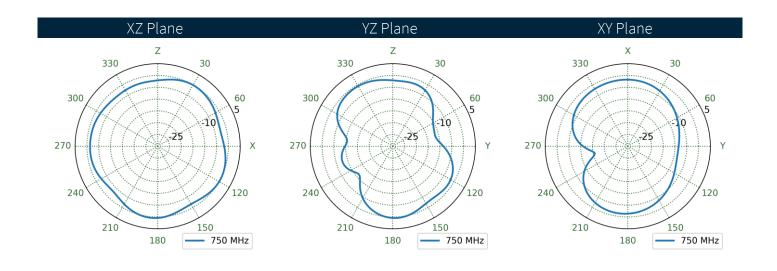

3.5 Peak Gain

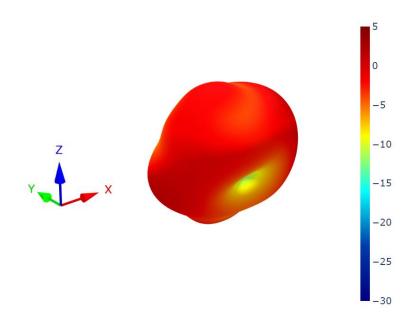


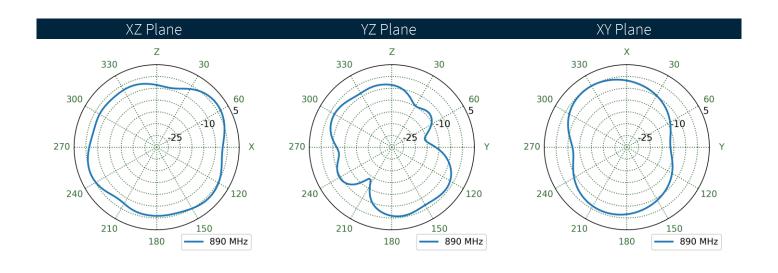
4. Radiation Patterns

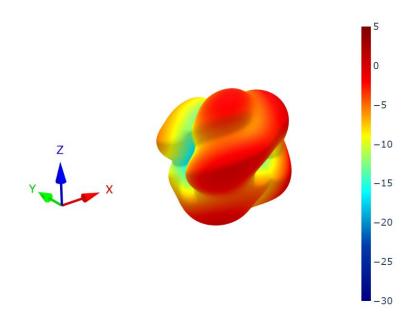

4.1 Test Setup

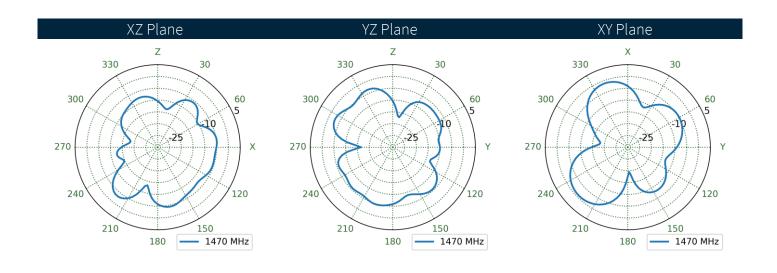
PCS.68.A Patterns at 650 MHz

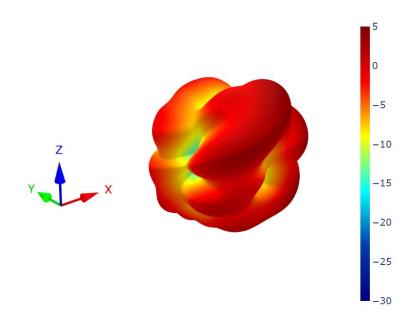


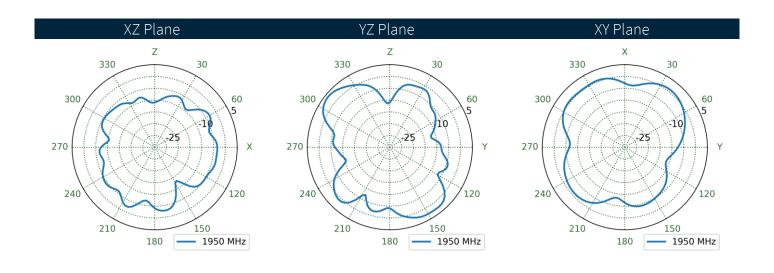

.3 PCS.68.A Patterns at 750 MHz

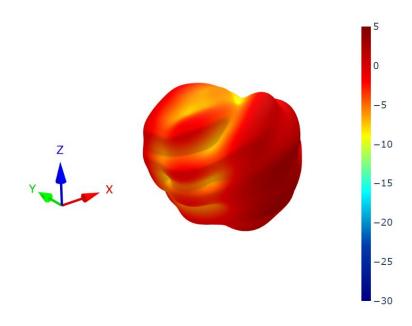


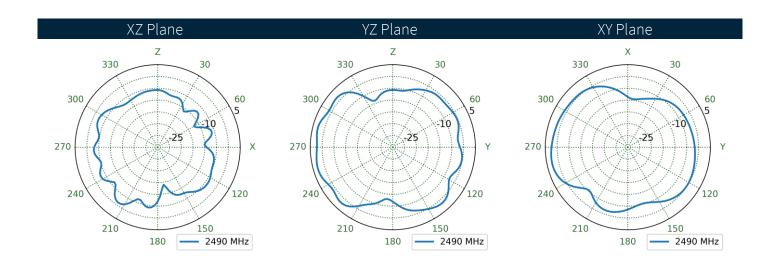

4.4 PCS.68.A Patterns at 890 MHz

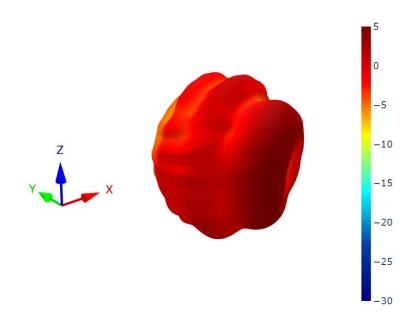


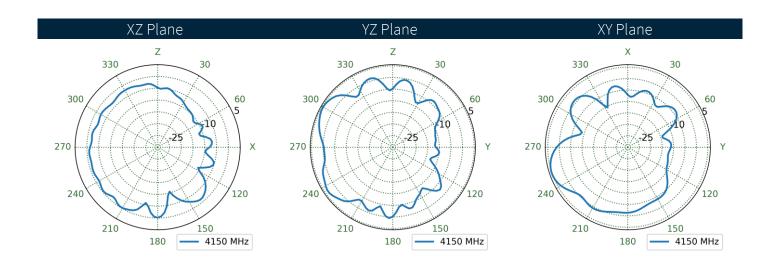

PCS.68.A Patterns at 1475 MHz

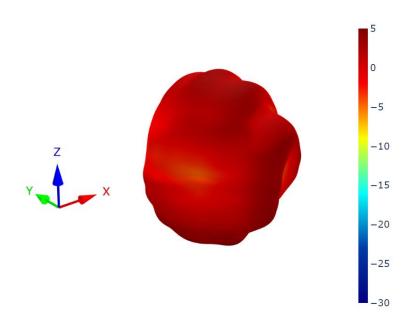


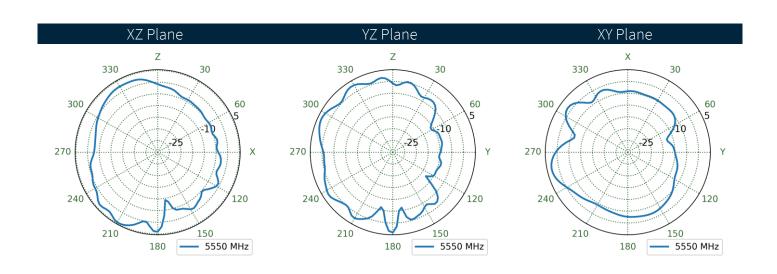

4.6 PCS.68.A Patterns at 1955 MHz

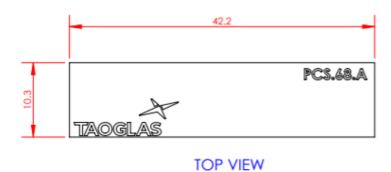


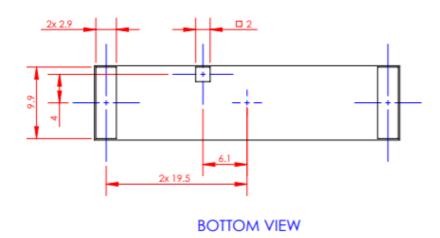

7 PCS.68.A Patterns at 2495 MHz




PCS.68.A Patterns at 4150 MHz




.9 PCS.68.A Patterns at 5550 MHz

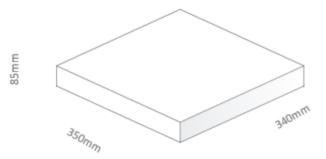


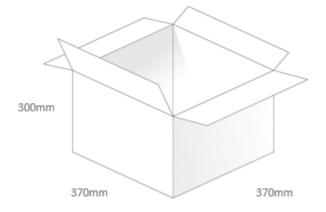
5. Mechanical Drawing

6. Packaging

1000 pcs PCS.68.A per Tape & Reel Dimensions: 330*330*60mm

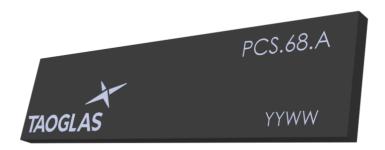
Weight: 2.6Kg


1 reel in small inner box Dimensions: 350*350*70mm

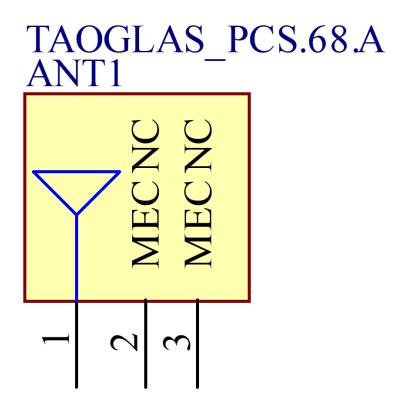

Weight: 2.7Kg

3000 pcs in one carton Dimensions: 370*360*275mm

Weight: 8.3Kg



Antenna Integration Guide



7.1 Schematic and Symbol Definition

The circuit symbol for the antenna is shown below. The antenna has 3 pins with only one pin (Pin 1) as functional. Pins 2 and 3 are for mechanical strength.

Pin	Description
1	RF Feed
2,3	Mechanical, Not Connected

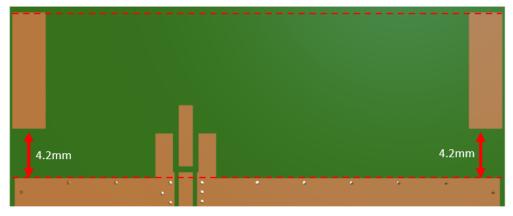
Please note you can download the CST simulation files from the website here:

https://www.taoglas.com/product/pcs-68-a-wideband-5g-4g-pcb-smd-antenna/

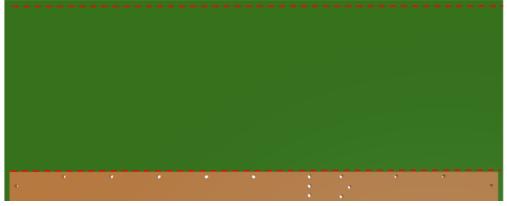
7.2 Antenna Integration

For any given PCB size, the antenna should ideally be placed on the PCB's shortest side, to take advantage of the ground plane. Optimized matching components can be placed as shown.

TAOGLAS YYWW


ANT1 LITER C2

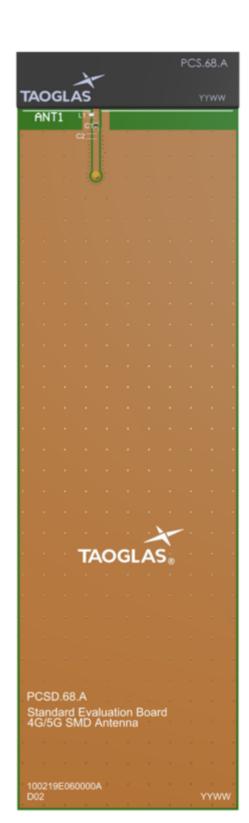
With Solder Mask


Without Solder Mask

7.3 PCB Clearance

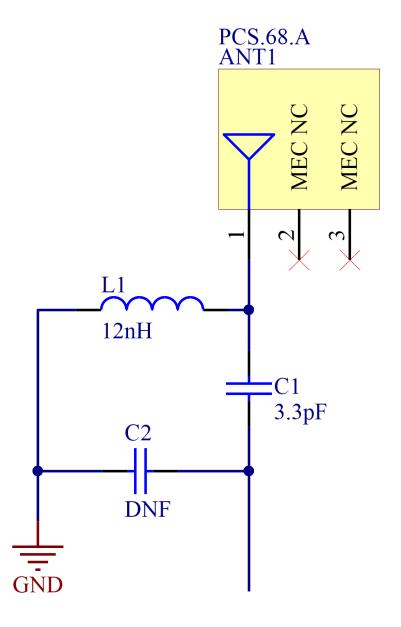
Below shows the antenna footprint and clearance through ALL layers on the PCB. Only the antenna pads and connections to feed and GND are present within this clearance area (marked RED). The clearance area extends to 4.2mm from the antenna mechanical pads to the ground area. This clearance area includes the bottom side and ALL internal layers on the PCB.


Topside

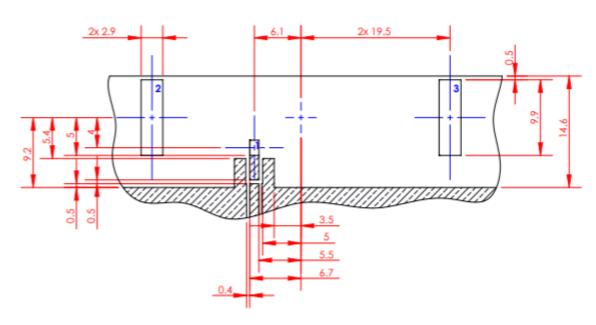

Bottom Side

7.4 Evaluation Board

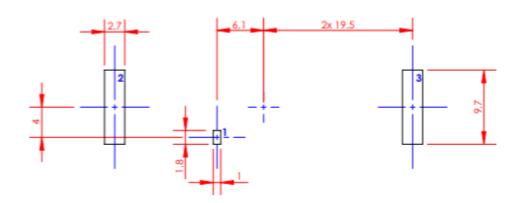
7.5



Ground Plane Length 130.2mm

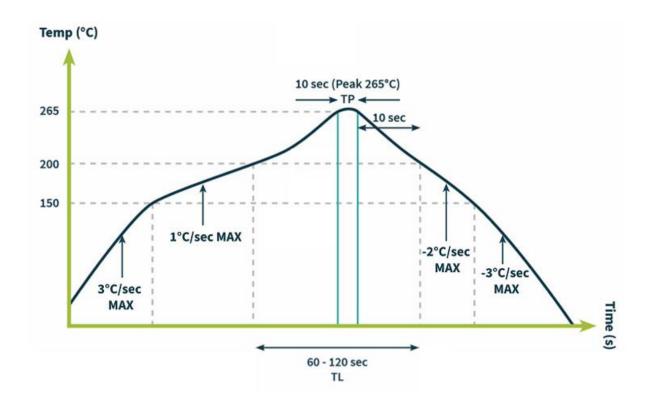

7.6 Evaluation Board Matching Circuit

Matching Components with the PCS.68.A are recommended for the antenna to have optimal performance on the evaluation board, located in the spaces specified in the above images. Additional matching components may be necessary for your device, so we recommend incorporating extra component footprints, forming a "pi" network, between the cellular module and the edge of the ground plane.



Designator	Туре	Value	Description
L1	Inductor	12nH	TDK: MLK1005S Series
C1	Capacitor	3.3pF	Murata:GRM1555 Series
C2	Capacitor	Not Fitted	

FOOTPRINT PCB

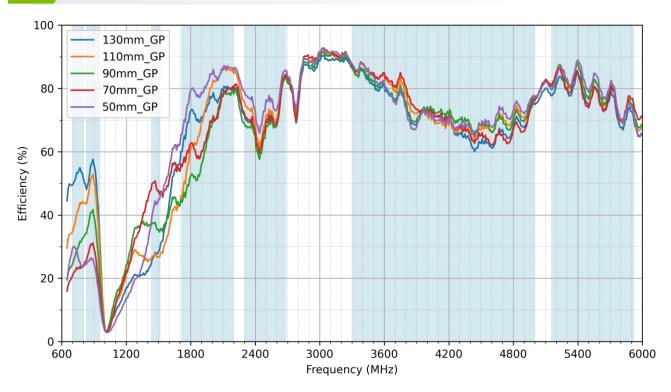


FOOTPRINT SOLDER PASTE

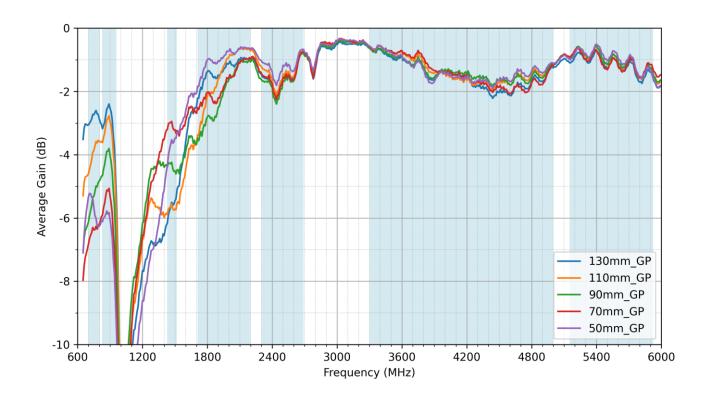
8. Solder Reflow Profile

The PCS.68.A can be assembled by following the recommended soldering temperatures are as follows:

*Temperatures listed within a tolerance of +/- 10° C

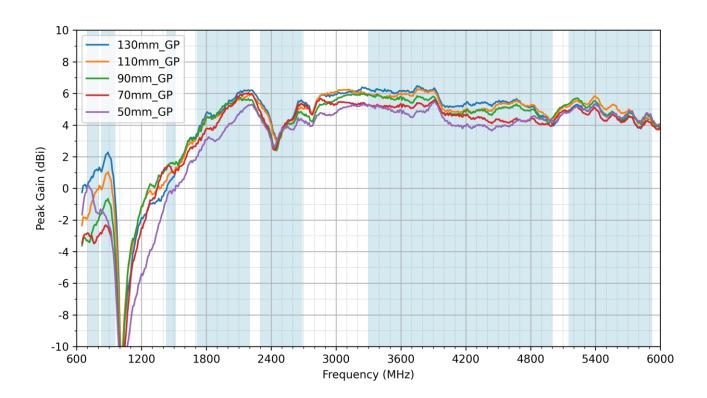

Smaller components are typically mounted on the first pass, however, we do advise mounting the PCS.68.A when placing larger components on the board during subsequent reflows.

Note: Soldering flux classified ROLO under IPC J-STD-004 is recommended.



9. Application Note

9.1 Efficiency



9.2 Average Gain

9.3 Peak Gain

SPE-19-8-129 - PCS.68.A

Revision: J (Current Version)

Date: 2023-09-07

Notes: Updated Solder Reflow Profile.

Author: Cesar Sousa

Previous Revisions

Revision: I			
	Date:	2023-08-08	

Updated Solder Reflow Profile.

Author: Gary West

Revision: D

Date: 2020-03-06

Notes: Updated drawing and pictures

Author: Jack Conroy

Revision: H

Date: 2023-03-03

Notes: Updated Antenna Integration Guide.

Author: Gary West

Revision: C

Date: 2020-01-02

Notes: Updated Packaging

Author: Jack Conroy

Revision: G

Date: 2022-05-11

Notes: Updated Packaging Graphics

Author: Paul Doyle

Revision: B

Date: 2019-12-11

Notes: Updated Packaging

Author: Jack Conroy

Revision: F

Date: 2021-11-03

Notes: Integration Guide Added.

Author: Gary West

Revision: A (Original Release)

Date: 2019-10-17

Initial Datasheet Release

Author: Yu Kai Yeung

Revision: E

Date: 2021-09-27

Notes: Updated MSL information and fixed formatting.

Author: Erik Landi

www.taoglas.com

30

www.taoglas.com

